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MOLECULAR DYNAMICS OF POLAR GAS ROTATIONAL RELAXATION 

by Frank J. Zeleznik, John V. Dugan, Jr., and Raymond W. Palmer 

Lewis Research Center 

SUMMARY 

A 50-molecule sample in contact with a heat bath of similar molecules was used as a 
model to calculate the rotational collision numbers Zrot for HC1 and DC1 at 300 and 
500 K,  by the method of molecular dynamics. The mean rotational energy of the sample 
exhibits an exponential approach to a steady-state value; however, there was considerable 
scatter about the exponential curve. The results for ZrOt generally agree with previous 
theoretical calculations and these results are intermediate to both experimental acoustic 
data and the earlier perturbation results. 

INTRODUCTION 

Accurate experimental studies of relaxation phenomena on the macroscopic level a r e  
difficult at best. This difficulty is compounded by the existence of two different theoret
ical definitions of a relaxation time and, furthermore, these definitions a r e  generally 
used interchangeably. Previous papers (refs. 1 and 2) applied these two definitions to 
the special case of rotational relaxation in polar gases. Both of these papers were essen
tially analytical calculations and were motivated by the desire to obtain a closed-form ex
pression for the rotational collision number ZrOt arising from each definition. In both 
cases a classical perturbation calculation was carried out through third order. Refer 
ence 1 used the energy relaxation definition of a relaxation time, while reference 2 em
ployed the definition based on volume viscosity. 

The results of references 1 and 2 can be succinctly stated in the following manner: 
(1) The two definitions agree exactly through third order in perturbation (apart from 

a multiplicative adjustable parameter). 
(2) Theoretically calculated values of Zrot increase for either a decrease in the 

dipole moment or a decrease in the moment of inertia; generally speaking, Zrot in
creases with temperature, but in some cases it may exhibit a shallow minimum. 



(3) The extraction of experimental rotational relaxation times from plar gas ther
mal conductivity measurements is highly suspect. 
These conclusions can only be given tentative acceptance since they a re  based on a cal
culation which was not only a perturbation calculation but also was restricted to a two-
dimensional model. 

The present report examines the effect of both the perturbation calculation and the 
two-dimensional model vis -&-vis the energy relaxation definition of a relaxation time. 
All the results are for a three-dimensional model of a polar gas whose rigid-rod mol
ecules interact by means of spherical hard cores with embedded point dipoles aligned 
along the symmetry axis. Further, all calculations are carried out numerically to avoid 
the perturbation assumption. The molecular dynamics approach to studying rotational 
relaxation in polar gases is used. 

Generally, the method of molecular dynamics is applied to dense fluids or solids to 
study both their time-dependent and time-independent properties. For example, Rahman 
(refs. 3 and 4) studied liquid argon by this technique and calculated the pair-correlation 
function, the self -diffusion coefficient, the velocity auto-correlation function, and the 
time-dependent pair -correlation function. Similarly, Verlet (refs. 5 and 6) calculated 
the temperature, pressure,  internal energy, and the pair-correlation function and its 
Fourier transform for liquid argon. In these cases the system '(thermalized" quite rap
idly and required on the order of 2X1O-l2 seconds to reach equilibrium (refs. 5 and 7). 
Kshler , Bellemans, and Gancberg (refs. 8 and 9) studied a system of weakly interacting 
electric dipoles confined to a rigid, square lattice. They examined the approach to equi
librium for such a system in terms of the first, second, and fourth moments of angular 
momentum and Boltzmann's H-function - the second moment being essentially the kinetic 
energy. They experienced difficulties in extracting relaxation times because of large 
fluctuations. An interesting aspect of this work is the demonstration of the existence of 
a set of initial conditions for which the system does not exhibit a definite temporal evolu
tion. This is similar to the situations observed by Hirooka and Saito (ref. 10) in their 
study of a two-dimensional square lattice of coupled anharmonic oscillators. They dem
onstrated the existence of an induction period that preceded the evolution toward equilib
rium. For a sufficiently weak coupling of the oscillators they could not detect any appre
ciable approach to equilibrium. 

All the examples of the molecular dynamics approach discussed to this point were 
similar in the sense that a macroscopic system was approximated by a finite system. 
The classical equations of motion for this finite system were then solved numerically. 
Such a procedure is necessary for liquids and solids because of the high densities in
volved. For low-density gases, on the other hand, the binary collision approximation 
can be invoked. This permits the decoupling of the large set of equations describing the 
evolution of the model into smaller subsets, with each subset now describing the interac
tion of a pair of molecules. It is possible to simplify the procedure even further by 
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introducing the idea of a heat bath, an infinitely large system that always remains in 
equilibrium. If a small sample system is immersed in the heat bath, all interactions 
among members of the small system may be ignored and only interactions between the 
heat bath and the sample system need be considered. A model of this kind has been used 
to study the relaxation of diatomic molecules in a heat bath by Alterman and Wilson (ref. 
ll), Raff (ref. 12), and Berend and Benson (ref. 13). 

Alterman and Wilson studied the vibrational relaxation of 50 bromine molecules in a 
heat bath of xenon atoms. They terminated their calculations after fewer than 250 co
linear collisions between the molecules and atoms. A vibrational relaxation time was 
obtained from the initial slope of the mean vibrational energy of the 50 molecules as a 
function of the number of collisions. It was not possible for them to determine relaxation 
times from all the calculations since in some cases there was no obvious choice of an 
initial slope. 

The rotational relaxation calculations of Raff (ref. 12) and Berend and Benson (ref. 
13) are similar in gross features; however, they differ considerably in their fine struc
ture. Both calculated a relaxation time in terms of a mean rate of energy transfer which 
effectively plays the same role as the initial slope in the Alterman and Wilson (ref. 11) 
calculations. However, Raff used a three-dimensional average calculated over a three-
dimensional flux distribution, while Berend and Benson performed a two dimensional cal
cubtion and averaged over a two-dimensional Boltzmann distribution. In view of these 
differences it is not surprising to find that their results do not agree when both calculate 
a common system. Thus, Raff’s calculations are lower by a factor of 5, while Berend 
and Benson’s calculations are higher by about the same amount when compared to the 
acoustic data of Jonkman and Ertas (ref. 14) for the rotational relaxation of p-H2 by He. 

The calculations described in this report are more akin to those of Alterman and 
Wilson (ref. 11)than they are to those of Raff (ref. 12) and Berend and Benson (ref. 13), 
in the sense that we follow the relaxation of a polar gas coupled to a heat bath. However, 
in contrast to the one-dimensional treatment of Alterman and Wilson, we shall carry out 
a three-dimensional calculation for a sufficient number of collisions to assess whether or 
not there is an exponential approach to equilibrium. Also we shall t r y  to extract rota
tional collision numbers as well as their dependence on the temperature, dipole moment, 
and moment of inertia. Specifically, a relatively small sample containing N molecules 
is placed into a heat bath of the same kind of molecules, An observation of the rotational 
energy of the sample as a function of the number of collisions n between the sample and 
heat bath molecules should enable us  to determine the rate at which the sample ap
proaches an equilibrium with the heat bath. If the sample approaches equilibrium expo
nentially, we should be able to extract a relaxation t ime from the data, provided that the 
sample and the heat bath are always in translational equilibrium but a re  not initially in 
rotational equilibrium. The rotational relaxation time TR for such a situation is defined 
by 
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dt N7R 

where ER is the rotational energy per particle of the sample and ER(t = m) = Em. If 
ER(t = 0) = Eo, integration of equation (1) gives 

ER - Eo = (E, 

If the mean time between collisions is denoted by re, then the number of collisions n 
and the rotational collision number Zrot a r e  defined by 

'C 

Combining equations (2) and (3) produces 

ER - Eo = (E, - Eo) [1 - exp -( N Z l 0 J l  

Expression (4) can be used to extract rotational collision numbers from the variations of 
ER with n. 

ANALYS IS OF THE CALCULATVON 

The numerical experiment which we shall carry out is conceptually quite simple, but 

its interpretation is f a r  from simple. To see this, consider an ensemble of such exper
iments; that is, we construct a very large number of identical replicas of the N
molecule sample system. Each of these replicas is observed as its rotational energy 
evolves when it is placed into contact with a heat bath for a fixed time period (or a fixed 
number of collisions). Because of the random nature of the interaction between the Sam
ple and the heat bath and because of the finite sample size, it is unrealistic to expect 
either that the evolution of ER will be a smooth exponential o r  that all members of the 
ensemble will evolve along a common curve. Thus our ensemble of experiments gener
ates an ensemble of curves and each curve exhibits many fluctuations o r  changes in slope. 
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No one member of the ensemble of numerically generated "experimental * *  curves 
adequately describes the real physical situation; however, it is reasonable to expect that 
an ensemble average of the data would be physically relevant and could be used to extract 
a Zrot (see top half of fig. 1). Further, the fluctuations in the data for one member of 
the ensemble about the mean of the ensemble data are minimized by a sufficiently large 
sample size N. Hence, the ideal, but economically unfeasible, numerical experiment 
would be to observe an ensemble of samples, each sample consisting of very many mol
ecules, for a very long period of time. By contrast, the practical calculation would be 
to observe one member of an ensemble of samples, each sample consisting of a few 
molecules, for a relatively short period of time. Considerations of computation time 
alone require that N be  about 50, certainly not much larger. The length of time that a 
sample must be  observed in order to adequately characterize its temporal evolution is 
certainly open to question. Obviously, the observational period must be considerably 
longer than the periods of the fluctuations in the curve. Intuitively, it seems reasonable 
to require that the observational period at least satisfy the inequality n > NZrot. 

Let us now assume that we have observed, for a relatively short period, the evolu
tion of ER for one sample of size N. How is this data to be analyzed, in te rms  of equa
tion (4), in order to obtain a physically relevant Zrot? We can either regard equation (4) 
as containing two fitting parameters ZrOt and E,, or  else we can fix E, at the value 
corresponding to the equilibrium rotational energy E and use only Zrot as a fitting

eq
parameter. Presumably, the two methods would give the same result for Zrot when ap
plied to the ensemble data of the ideal experiment discussed previously. It is ,however, 
unlikely that they will give the same results for Zrot when applied to the practical cal
culation. It is not possible to say which method will give the more physically realistic 
result, although the two-parameter method will certainly give the best possible represen
tation of the temporal evolution of ER. For this reason both the two-parameter and one-
parameter methods are used to analyze the data. Within either the two-parameter or 
one-parameter framework we must still attempt to obtain a Zrot from the data of one 
member of the ensemble which might be comparable to that determined by the data of the 
entire ensemble. For this reason a heuristic alternative to the analysis of the ensemble 
data is described. The description is given in terms of the two-parameter treatment of 
the data, but it is equally applicable to the one-parameter treatment. 

The random nature of the interaction between the heat bath and the sample has been 
previously pointed out. Thus, if equation (4) were fitted to the data of each ensemble 
member separately, a somewhat different pair of '%est'' parameters would be  obtained, 
reflecting the different history of each replica (see bottom half of fig. 1). In effect, 
the 
the 
ble 

parameters Zrot and E,, which characterize the evolution of the replica during 
short observational period, are random variables. In principle, it should be possi
to construct new random variables from Zrot and Em which will serve as unbiased 
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estimators of the physically relevant Zrot and E which would be obtained from an 
analysis of the data of the entire ensemble. 

eq 

Now observe that the duration of observation simply cannot remove the randomness 
of the heat bath - sample interaction. Suppose then that a given member of the ensemble 
has been observed for a sufficiently large number of collisions n1 > NZrOt and the data 
analyzed to extract the two parameters Zrot(l) and Em(l). This sample is allowed to 
continue its evolution until there have been an additional An collisions and then the 
parameters ZrOt(2) and E,(2) a r e  obtained. Proceeding in this fashion, Zrot(k) and 
E,(k) a r e  obtained at nk = %-1 + An collisions. Each fixed increment An is a random 
increment in the random history of the sample and, therefore, it appears plausible to ap
proximate the ensemble average Zrot by the mean of Zrot(k) 

The value of kmax is determined largely by what is considered to be an economically 
acceptable amount of computation. 

The mean of the values of E,(k) can be used in an attempt to justify the termination 
of the calculation, a posteriori, in the following manner: It is well known that the mean 
of a random sample of s ize  N drawn from some distribution is not, in general, equal to 
the first moment of the distribution. Instead, a set of such means is distributed about 
the first moment. It might be expected that the mean values of E, from calculations 
done at different conditions would exhibit variations about E comparable to those ob

eq
tained in drawing a random sample of size N from an equilibrium distribution. On this 
basis, then, if the distribution of the mean values of E, is radically different from that 
expected of random samples of size N, we would suspect that an insufficient number of 
collisions had been studied. On the other hand, we could reasonably hope that if the dis
tribution of mean values of E, is consistent with that expected of a sample of size N, 
then enough collisions had been studied. For this purpose we must know the probability 
that a sample of size N, when drawn from an equilibrium distribution, will have a rota
tional energy within a given interval about the population mean. 

Consider the equilibrium distribution of molecular rotational energy E .  E the mol
ecule possesses two degrees of freedom, the distribution function at a temperature T is 
given by 

where P'l = kT and k is Boltzmann's constant. This is an example of a x2 -
distribution with v degrees of freedom 
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where v has been set equal to 2. This can be easily seen by making a change of varia
bles x2 = 2Pc in equation (5). The moment-generating function for equation (6) is given 
by 


Instead of considering the distribution of ER 

it is convenient to consider the distribution of the dimensionless quantity PER. 

From the properties of the moment -generating function (ref. 15, p. 135), it follows that 

where F is the distribution function for PER. But using the transformation x2 = ~ P E ,  
as before, M (e) can be expressed in terms of M z(e).

P E  X 

Hence, combining equations (7) and (11) with equation (lo),  
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where v should actually be set equal to 2 Thus, PER is also distributed as a x2 -
distribution but with Nv/2 degrees of freedom In fact, it can be verified that PER 
has the distribution 

The moments of this distribution a re  

while its cumulants are 

Note that, for large N, PER is a normal variable, with p 1 / G  = dm. 
Now the probability P that a random-sample of size N will have a PER that lies 

in the interval (1 f p)pl about the mean pl  can easily be calculated. Here p satisfies 
the condition 0 < p < 1. 

The probability P can be readily evaluated in terms of the incomplete r-function ratio 
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which has been tabulated by Harter (ref 16). 

Figure 2 is a plot of P as a function of Nv/2, with p taken as a parameter. It is ap
parent from this figure that the one-parameter family of curves grows quite slowly be
yond Nv/2 = 50. Since v equals 2 for the rotational energy distribution, the sample 
size N would have to be quite large for the sample means to be sharply clustered about 
the first moment. Since N has been chosen equal to 50, there should be substantial 
fluctuations in the mean values of Em. 

CALCULATION METHOD 

The calculational method has been described in general terms. Some of the specif
ics a r e  presented in this section. The physical system is a gas composed of polar mol
ecules which a re  represented as rigid rods surrounded by a spherical hard cores with 
embedded point dipoles. The rotational energies of a sample of N = 50 such molecules 
is distributed randomly over a x2 -distribution with v =  2 degrees of freedom and a tem
perature of T = To. The translational velocities of these molecules a r e  assumed to be 
in equilibrium with a heat bath of the same molecules and are characterized by a 
Boltzmann distribution at a temperature T > To. Thus, it is not necessary to keep 
track of the translational energies of the sample molecules during the computation. The 
calculation is carried out by performing the following steps repetitively: 

(1) One "sample" molecule and one "heat bath" molecule a r e  randomly selected as 
collision partners. 

(2) The two molecules scatter and, in so doing, alter the rotational energy of the 
"sample molecule. t t  

(3) After each scattering, a new mean rotational energy of the sample molecules is 
computed. 
The details of random selection a r e  given in the following section; the balance of this sec
tion is devoted to a discussion of the scattering equations of motion and their numerical 
solution. 

The relative motion of two molecules is described by the Lagrangian equations ob
tained from the Lagrangian 
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where Ttrans is the kinetic energy of relative motion, Trot(i) (where i = 1 ,2 )  is the 
rotational kinetic energy of the ithmolecule, V is the dipole-dipole interaction, and 
chc is a spherical hard-core potential of diameter cr = (o + 02)/2 (where cr and u 
a r e  the molecular diameters of the colliding molecules). The rotational kinetic energy 
is conventionally written in terms of the Euler angles (ref. 17). However, since we a r e  
dealing with rigid rods, only two angles are needed to specify the orientation and these 
might just as well be chosen as the spherical angles e and Cp (where e is the polar 
angle and Cp the azimuthal angle). Hence, 

This form possesses the distinct disadvantage that it leads to the appearance of sin e
j

in the denominator of the differential equation determining Cpj , resulting in undesirable 
numerical consequences when e

j 
is near either zero or n. This difficulty can be easily 

circumvented by describing the rotational motion of a rigid rod in terms of Cartesian 
coordinates 3 (where j = 1,2)  and by constraining these coordinates to lie on a unit 
sphere (ref. 18). The angles e.J and 4.

J 
now describe the orientation of the unit 

vectors 4. 
The foregoing considerations lead to 

. .

Ijxj.xj 
Trot(j) = -

2 
j = 1 ,2  

subject to the constraints 

q.(x.) -1 (q.jij - 1) = 0 j = 1 , 2  
J J 2 

The factor 1/2 in equation (21) was inserted simply for later convenience. If 
fi = (X,Y,Z) is the separation vector for the two molecules and m their reduced mass, 
the relative translational kinetic energy is 

e - 


R *  R= m -
Ttrans 2 

while the dipole-dipole interaction has the form 
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In this section p1 and p2 a r e  the molecular dipole moments and do not designate mo
ments of a distribution. Note that we have assumed that the dipole moment lies along the 
rigid rod. To incorporate the constraints it is convenient to define a new Lagrangian 
containing undetermined multipliers 3 (where j = 1,2) by 

9= L + hlrll + 9 7 2  

and to consider the variational principle 

L 

In the variation of this integral, E, xj, and $ a r e  treated as independent and the varia
-e 

tions in R and a r e  required to vanish at the end points. This is just a special case 
J

of the problem of Lagrange in the calculus of variations (refs. 19 and 20). Carrying out 
the required variations gives 

Using the fact that 

2 d 
6R = -6R 

dt 

and performing an integration by parts, 
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t=t2 

t=t1 

The integrated terms disappear because the variations vanish at the end points. Thus the 
variations in R and 3 lead to the equations 

i 
while the variations in + give the constraint relations (eq. (21)). 

The rather simple structure of the dipole-dipole interaction and the constraint rela
tions makes it possible to avoid the explicit appearance of the multipliers in the equations-
of motion. Since a7 /a' 3 = 7, it follows from the constraint relations (eq. (21)) that 
Z. - (aq./a'.)

1 x 3  
= 1. Equivalently, this follows from Ehler's theorem on homogeneous func

tions. Hence, from the second member of equation (26) 

The right side of this expression is rewritten by observing that aL/aF.
J 

= -aV/a;., 
J 

and 
since V is homogeneous of degree 1in z.,

J 
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--- -- - - -  
- - -  

- - - 

where again Euler’s theorem on homogeneous functions was used. Also since 
aL/i33 = I.?. , and by twice differentiating the constraint equations (21) with respect to-J ?time to obtain 5 5 + i.- 2.

1 
= 0, we find that

3 
. .  
e

- - Ij3? = -2T rot (j) 

Substituting equations (28) and (29) into equation (27) yields 

The complete set of working equations is now obtained by using equation (30) in equation 
(26), and adjoining equation (21) and its first derivative to the system to obtain 

These equations are only applicable if  (E E) > a2; when (E - E) = a2, the molecules 
undergo a hard-sphere collision. The derivatives in equation (31) have the specific forms 

av - 3 p l p 2  [ ( ~ ~ e ; ~  - 5r.x1x2.rb + r-x1x2 + x1x2-r 
aR (‘;.E)2 

-- -I1 

-where r = R/(R.R) 1/2 . 
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The equations of motion (eq. (31)) a r e  solved numerically with a variable-step-size, 
fifth-order Runge-Kutta integration scheme. The method of altering the step size is de
scribed in appendix A. At each step of the integration the component of 3 with the 
largest absolute value is determined. Its value and the value of its time derivative at the 
end of the next step are calculated from the last two members of equation (31); concom
itantly, the differential equation for this component is ignored. The remaining variables 
and their time derivatives a r e  obtained from the differential equations contained in equa
tion (31). The change in step size was determined by an empirical technique based on 
the error  accumulated in the total energy of the pair of molecules. In all cases the total 
energy is conserved to better than about one part in 104 . Random checks of time rever
sal showed that the coordinates returned to within several tenths of a percent of their ini
tial values. The velocities were within a few percent of the initial values except for very 
few trajectories. The integration was terminated when the molecules were sufficiently 
separated so that the interaction potential was effectively negligible; that is, 
plp2/(z 33/2<-min [Trot(l), TrOt(2)]. The average calculating time on an IBM 7094 
was about 8 seconds per collision, although those trajectories characterized by low rela
tive translational energies required considerably more computer time. 

Each set  of initial conditions for a potential collision was examined to determine 
whether the trajectory should be calculated. There were three circumstances under 
which a set  of initial conditions was rejected. The first category of rejected initial con
ditions is that corresponding to collisions with projected running times in excess of 1 
minute. A second class of rejected initial conditions is that corresponding to collisions 
with large impact parameters b. Such collisions can reasonably be expected to produce 
negligible changes in the rotational energy. These collisions were rejected if b > 2.5 g, 
where (T was the same for all molecules; this corresponds to impact parameters 
b > 8.42 A. The third category of rejected initial conditions differs from the first two. 
The calculation of the trajectories in this category was attempted but had to be prema
turely terminated because the integration step s ize  became too small. The minimum al
lowable step size used was lom2' seconds = scaled units. Collisions that fell into 
this category were generally those involving molecules with high rotational energies. 
Very little computing time is used to re.cognize these cases since the step-size changing 
routine rapidly reaches this minimum step size for these collisions. 

It is shown in the following section that it is convenient to give the initial rotational 
conditions of a molecule in  terms of the angles 6 and @ rather than the Cartesian coor
dinates K (suppressing the index j). These quantities a r e  related by the expression 
x'= (sin 8 cos @, sin e s in  @, cos e). The time derivatives a r e  then obtained by 
differ entiation 
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SELECTION OF INITIAL CONDITIONS 

Since the scattering problem is a two-body calculation, it can be reduced to a prob
lem involving only the rotational motion of the two molecules and their relative transla
tional motion. The pertinent equations a r e  described in the previous section. A com
plete set  of initial conditions for these equations requires the selection of a "sample" 
molecule and a specification of its initial rotational motion, a specification of the initial 
rotational motion of a "heat bath" molecule, and a specification of their relative transla
tional motion. All these assignments of initial conditions must be made in a manner that 
is consistent with the fact that (1) ?%eatbath" molecules a r e  in an equilibrium distribu
tion at a temperature T, (2) the "sample" and "heat bath??molecules a r e  in  translational 
equilibrium, and (3) the ??sample?'molecule has a known rotational energy. 

First, the problem of the specification of the initial rotational state of a rigid-rod 
molecule is examined. If the effect of interactions is neglected, the rotational coordi
nates e and @ and their conjugate momenta (see eq. (19)) 

aTrot - pe = Ib 
ah 

(33) 


aTrot - p @ =I$ sin2 ,g
a$  

have the normalized distribution 

r 

where 0 5 e % n, 0% @ 5 2n, -00 5 pe 5 m, -00 5 p@ sa. If we introduce the 
transformation 

P$ =$p sin e cos +7 

pe = + p  sin + 

e = e  

@ = @  

(35) 
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with Jacobian Ip sin e ,  the distribution takes the simpler factorized form 

for 0 5 p 5 00, 0 5 + 5 28, 0 5 e 5 8 ,  and 0 5 @ zs 27~. The new variable p effectively 
specifies the rotational energy, while + relates the two momenta p and p Thus,e @ *
from the first two members of equation (35), we readily deduce 

Each factor on the right is now a normalized one-variable distribution function for which 
the cumulative distribution (ref. 15, p. 23) can readily be  obtained by integration. 
Therefore, we can pick at random from this distribution by using the method described 
by SchrGder (ref. 21). In this method the cumulative distribution is equated to a random 
number R (numbers which are uniformly distributed over the interval [O, 1D, and the 
equation is then solved for the independent variable. This leads to 

+ = ~ I T R +  i (37) 

e = COS" (1 - 2Re) I
J 

where in the first of these equations we used the fact that if R is a random number, so 
too is 1 - R. The subscripts on the various R's serve only to distinguish different ran
dom numbers. By combining equation (33) with equations (35) and (37), expressions a re  
obtained for the quantities and 4 which are used directly rather than pQ and p4.  
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Equation (38) and the last two members of equation (37) can be used to assign the ro
tational state of a randomly selected "heat bath" molecule. The orientation of a "Sam
ple" molecule may still be calculated from the last two members of equation (37); how
ever, equation (38) cannot be used for their velocities since the rotational energy ei of 
the ith "sample1' molecule is known. Nevertheless, since p2 is just twice the rota
tional energy, we may replace equation (38) with 

(#I. 2Ei* ' = -2 IRe(l - Re)] " 'cos 2sR+ J
1 

for the "sample" molecules. 
There still remains the task of assigning the initial coordinates and momenta for the 

relative translational motion. The "sample" molecule is taken as the origin of the Car
tesian, orthogonal coordinate system describing the relative motion (see fig. 3), while 
the "heat bath" molecule is situated on the negative Z-axis  at a distance p from the 
origin. The initial separation distance was chosen as p = 10 A. Let pl, p2, and p3 be 
the translational momenta conjugate to X, Y,  and Z ,  respectively. Obviously, if any 
scattering is to take place, p3 must be greater than zero. Thus, it is appropriate to 
pick the pi from the normalized flux distribution 

for 0 5 p3 I00, -00 5 pl 5 03, and -00 5 p2 5 00. If the transformation 
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p2 = (7r’2 iq sin rp 

with Jacobian (2m/p)3/2 q is introduced, ftrans becomes 

2 -2 
(q,p, q)dq dp dqo = e-q d(q2) e-p d g )  9 

ftrans 2s 

for 0 Iq 5 00, 0 IF5 00, and 0 Irp 5 2s. The variable q is just that part of the di
mensionless relative kinetic energy that arises from the velocity components in the X-Y 
plane. The variable p is that part of the dimensionless relative kinetic energy that 
comes from the Z-component of velocity 

1 


2m 

Once again, the cumulative distribution function method can be used for picking from 
ftrans. This gives 

q = (- In Rq) 

1/2 1 
-p = (- In F?.$ (4 3) 

~ = 2 s R  

where in the first two equations we again used the fact that if  R is a random number, 
then so too is 1 - R. Combining equations (43) and (41) gives 
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p1 = [-(y)In R4]y2 cos 2nR 

p2 = [-( y ) l n  R.3 1/2 sin 27rR 
(44) 

This completes the specification of the initial conditions for the scattering problem apart 
from the selection of the particular t " m p l e t t  molecule that is to participate in the scat
tering. If the ith molecule is to participate in the scattering, the index i is chosen by 
the prescription 

R N =  1 

where [a]represents the largest integer less than a. 

DESCRIPTION OF COLLISON TRAJECTORIES 

Time-history plots of relative translational velocity and target rotational energy and 
collision trajectories a r e  shown in figures 4 and 5 for two types of collisions. The plots 
in figure 4 correspond to a reflecting collision, that is, a collision for which the distance 
of closest approach is u. The plots in figure 5 correspond to a simple deflection colli
sion, that is, a collision for which the distance of closest approach is greater than u. 
All these plots were constructed by connecting N + 1 points, corresponding to N inte
gration steps, by N straight lines. The plotting was terminated after no more than 250 
integration steps. 

A typical variation of the absolute value of the relative velocity is shown in figure 
4(a) for a reflecting collision with an initial value of 121nearly thermal at T = 300 K. 
The corresponding variation in rotational energy of the target molecule is shown versus 
intermolecular separation in figure 4(b). The periodic character of both plots is due to 
the change in orientation angle between the dipoles. This oscillatory behavior becomes 
more irregular and of higher amplitude at small separations, where the dipole-dipole 
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interaction becomes strongest. Since the relative translational energy mv2/2 = 0.016 eV 
is much greater than the rotational target energy E ? kTo = 0.002 eV for these condi
tions (Ttrans = 300 K; Trot = 25 K), the change in IE1 (-50 percent) is much smaller 
than the change in E (a factor of 8). The projections of the incident heat bath molecule in 
the three Cartesian planes a r e  shown in figures 4(c) to (e) for the simple reflection colli
sion where the radial velocity changes sign at 3.36 A. Similar plots a r e  shown for a sim
ple deflection collision in figures 5(a) to (c). The variation in initial velocity is relatively 
small since the turning point for relative motion is at 4 .6  A. The target rotor is still 
considerably perturbed since it is initially relatively "cold"; the rotational energy varies 
by about a factor of 5. The projection of the incident molecule's trajectory in the Y-Z 
plane is nearly a straight line. The projection of the motion onto the other two coordi
nat e planes also gave straight lines. 

RESULTS 

Calculations have been performed for both HC1 and DC1 at two temperatures, 300 
and 500 K. These four calculations were supplemented by 300 K calculations for two 
pseudo-HC1 molecules which had the same molecular properties as HC1 except for the 
dipole moment. In one case, the dipole moment was one-half the dipole moment of HC1; 
while in the other case, the dipole moment was 9/10 the value for HCl. These two 
pseudo-HC1 molecules are designated HC1(1/2) and HC1(9/10). The molecular properties 
for the four molecules are listed in table I. Each of the six calculations was carried out 
for 3000 collisions on a sample of 50 molecules drawn at random from an equilibrium 
distribution of rotational energy at To = 25 K. The same initial distribution was used in 
all six cases and corresponded to a mean initial rotational energy of DOEo = 0.9464. 

Equation (4) was fitted to the results of the calculations both as a two parameter 
equation and a one parameter equation by the methods described in the appendix B. The 
two parameter fi t  was always superior to the one parameter f i t ,  just as would be ex
pected. The fitting was carried out after every 50 collisions, and the results a r e  pre
sented in figures 6 to 11. It is apparent that the choice nl = 2000 will satisfy the con
dition nl > NZrOt for all cases except for HC1(1/2) in the one parameter fitting of fig
u re  11. In spite of this, n1 = 2000 is used even in this case. Table II presents the mean 
values of the fitting constants in the interval [ZOOO, 30001, as well as the initial relative 
kinetic energy Etrans and the initial rotational energy of the heat bath molecules Erot, 
averaged over the 3000 collisions. Five of the six values of @Eoogiven in table II lie 
within 20 percent of unity, which agrees astonishingly well with the prediction of 84 per
cent given in figure 2. Similarly, the values of @Etrans are all within 5 percent of the 
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infinite p3pulation average of 2. The fact that ,BEtrans is consistently greater than the 
infinite p3pulation average of 2 is most likely a reflection of bias introduced by the proc
ess of rejecting initial conditions. The most obvious culprit of the three rejection cat
egories is the rejection based on excessively long projected running times. This con
sistently rejects only collisions with low relative kinetic energies. This category repre
sented 20 to 30 rejects for every 3000 collisions used. It is unlikely that any bias was in
troduced by the large-impact-parameter rej ection category since this criterion only ex
presses a relation between the component of a along the Z-axis and the other two com
ponents. Since the components are assigned randomly, this should reject some low rela
tive kinetic energy collisions as well as some high energy collisions. However, initial 
conditions rejected because the step size was too small undoubtedly played a Part. This 
was particularly obvious when we attempted to do calculations for HF. We found that, 
because of the strong dipole-dipole interaction, approximately 20 to 25 percent of the 
collisions that we attempted to calculate were  being rejected because the step size be
came too small. This produced such a strong bias in ,BEtrans that we considered the 
calculations unusable. Typically, there were 800 to 1000 large-impact-parameter re
jects, 20 to 30 long-integration-time rejects, and 20 to 30 step-size-too-small rejects 
for  the calculations reported here. 

Figures 12 to 14 display two exponential curves calculated from equation (41, as well 
as their asymptotic values and the data points for ER after every 10 collisions. One 
curve was obtained using @Eoo= 1 and the mean one parameter Zrot for the interval 
[2000, 30001. The other curve corresponds to the mean two parameter Zrot for the in
terval 2000 to 3000 and the ,BEm which minimizes the function @ of appendix B for this 

'rot. Table III tabulates the function @ for each ,9air of curves and also the value of @ 

obtained by a direct one or  two parameter least squares fitting of the 3000 data points. 
The data in table 111 clearly demonstrate the superiority of a two parameter fit over a 
one parameter f i t  since the value of 4, is always smaller for a two parameter fit.  They 
also show that the mean Zrot curves are only moderately inferior to the free Zrot 
curves. A cursory examination of figures 12 to 14 discloses that an exponential does 
indeed seem to describe the evolution of the sample rotational energy but that the data 
scatter considerably about the fitted curve. 

Table IV contains a summary of the experimental and theoretical Zrot for HC1 and 
DC1. The experimental numbers come from both thermal conductivity measurements and 
acoustic measurements. Even though the validity of the thermal conductivity numbers 
was questioned in reference 2, we nevertheless include them for comparison purposes. 
The acoustic numbers are the recent results obtained by Evans (ref. 22). He analyzed 
his measurements in terms of both a single and a double relaxation process and, further, 
he used a frequency dependent specific heat when calculating the classical absorption. 
The theoretical Zrot were obtained from tabulations in reference 2,  as well as from the  
calculations of this report. In the molecular dynamics results we have included not only 
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the mean Zrot for the interval [ZOOO, 30001, but also the extreme values in this interval. 
The latter are a more meaningful measure of the uncertainty in this case than the stand
ard deviation. 

Several qualitative observations can be made on the basis of the data in table IV. 
First, all the molecular dynamics results fall between the experimental data and the r e 
sults of the perturbation calculation and, hence, are in closer agreement with experi
mental results. Second, all the numbers in table IV show that Zrot increases with tem
perature except for those extracted from thermal conductivity measurements and the one 
parameter results for DC1. This is also apparent from table V. Third, all the theoret
ical numbers, except the one parameter, 300 K molecular dynamics data, show that in
creasing the moment of inertia decreases Zrot. On the basis of these facts it seems 
that the two parameter data should be preferred over the one parameter results. 
Fourth, a comparison of HCl and HC1(1/2) shows that the dipole moment dependence of 
the molecular dynamics results is considerably weaker than the p4 dependence obtained 
in references 1and 2; this is particularly true of the two parameter numbers. 

We have shown that the results from the two parameter f i t  of the molecular dynamics 
calculations are in reasonable consonance with other theoretical predictions and, in addi
tion, seem to be a closer approximation to the acoustic data than were the perturbation 
calculations of references 1and 2. But this alone is insufficient evidence to inspire an 
overwhelming confidence in the results. Any such confidence is quickly tempered by the 
incongruous result for HC1(9/10) in table IV. Based on the values for HC1 and HC1(1/2) 
we would expect Zrot for HC1(9/10) to be quite close to that for HC1 but still slightly 
larger. It is in fact considerably smaller. This opens two possibilities for considera
tion. The first is that 3000 collisions a r e  insufficient to obtain an accurate Zrot; the 
second possibility is that a 50-molecule sample is too small to give a precise value for 

‘rot. The first option can be easily investigated by determining how close the fitted 
curves for ER, shown in figures 12 and 14, are to their asymptotic values after 3000 col
lisions. This is shown in table VI. Obviously, in all cases 3000 collisions brings the 
sample within 91 percent of the asymptotic value for ER except for the one parameter 
data for HC1(1/2). As a matter of fact, HCl and HC1(9/10) at 300 K are each within 5 per
cent of their asymptotic value. This certainly must eliminate the first possibility and 
leave us only with the second one. So it appears that even under the best of circum
stances we must be prepared to accept an uncertainty in Zrot of the order of six units, 
representing the difference between HCl and HC1(9/10) when working with such a small 
sample. 

Finally, there is one additional aspect of the problem of determining Zrot by molec
ular dynamics. To carry out the scattering calculations we were required to select an 
initial separation p. Our choice of an initial separation of p = 10 A was dictated by 
pragmatic considerations. However, this choice committed us to the proposition that any 
potential collision with an impact parameter b > p is not a physically significant 
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collision insofar as gas phase properties a r e  concerned. Thus, in effect, we made a de
cision on what should be called a collision. However, in our computations we did more 
than this, since we rejected all collisions with impact parameters that exceeded 
bm = 2.5 G = 8.42 A. Thus, collisions whose impact parameters were in the range 
8.42 A < b < 10 A were not counted. Although we cannot estimate the effect of our-
choice for p, we can quite easily place an upper limit on the effect of our choice for bm. 
To do this we must know what fraction s of all physically significant collisions (b <-p) 
have impact parameters less than, o r  equal to, bm. But this is nothing more than the 
cumulative distribution function for b evaluated at bm. 

The impact parameter is related to the variables q and H of the translational dis
tribution function (42) by 

Thus, in the space spanned by q2, 8 ,the curves of constant impact parameter a r e  the 
straight lines 

p = q2 

Thus, the cumulative distribution function for b is given by the integral 

2Therefore, it follows that s = bm/p 2. If we now reasonably assume that collisions with 
b >b, are uniformly distributed during the course of the calculation, the choice of 
bm < p implies a uniform scale change in the abscissa n, n = n's. Hence, since 
n;NZrot = n'/NZiot, we conclude that Zkot = Zrot/s = p2 Zrot/bm. Incorporating our2 
choice of p and bm results in Ziot = 1.41 Zrot. This is clearly an upper limit to the 
effect since this presumes that the ordinate ER is unaffected. In spite of the fact that 
the neglected collisions would not be  responsible for a large fraction of the total energy 
transferred to the sample molecules, they could transfer some energy. This is partic
ularly true during the initial phases of the calculation, when the net effect should be to in
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crease the energy absorption by the cold sample molecules. This could somewhat com
pensate for the stretching of the abscissa. Interestingly enough, the effect we have been 
discussing serves to bring the rotational collision numbers somewhat closer to the values 
obtained by the perturbation calculation. This is shown in table VI1 which gives Zrot, 

G o t  , and the numbers obtained by the perturbation calculation for HC1 and DC1. Al
though, the values of Ziot  a r e  closer to the perturbation results, they a re  further away 
from the experiment acoustic values than Zrot. 

CONCLUSIONS 

The discussions of the previous section can be summarized as  follows: 
1. The mean rotational energy of the sample molecules exhibits an exponential ap

proach to a steady state value; however, there is considerable scatter about the expo
nential curve. 

2. The molecular dynamics results for HC1 and DC1 are generally in consonance with 
previous perturbation calculations. 

3. The values of Zrot for HC1 and DC1 obtained by molecular dynamics a re  
intermediate to the experimental Zrot values and those obtained by a perturbation 
calculation. 

Lewis Research Center, 
National Aeronautics and Space Administration, 

Cleveland, Ohio, February 10, 1971, 
129-01. 
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APPENDIX A 

STEP-SIZE CONTROL 

The integration step size was determined by an empirical technique based on (1)the 
conservation of energy E during a collision, (2) a specified maximum allowable e r ror  
in the energy, AE > 0, and (3) an estimated total trajectory time T. If E(') > 0 is the 

initial energy, h(i) is the step size to be taken in the next integration step, 

t(i+l)= t(i) + h(i), and E(i) and are the values of the  energy before and after the 

step, respectively, then the step produces an actual e r ror  increment in the energy that 

may be expressed as 


On the other hand, a maximum tolerated e r ror  increment for the step is defined by 

L 


E@)T 

At the conclusion of each step we calculate 

If 0 -< -< 2 ,  the step is accepted; otherwise, it is rejected. In either case, a new 
step size is chosen by the prescription 

where m is the order of the Runge-Kutta integration routine. 
This prescription for altering the step size can lead to either a larger o r  a smaller 

step size. Should the step s ize  become smaller than loW2' second, the calculation is 
terminated. Fortunately, such a situation rarely occurs. 
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APPENDIX B 

LEAST SQUARES FITTING 

There a r e  three available parameters to f i t  equation (4) to the sample rotational 
energy data in a least squares sense, namely, Eo, E,, and ZrOt. W e  chose Eo s o  
that the curve would pass through the known rotational energy prior to any collisions. 
This leaves only Em and Zrot. The parameter Em presumably corresponds to the 
equilibrium value which is equal to kT for an infinite population of molecules with two 
rotational degrees of freedom. But for a sample of only 50 molecules, based on our sta
tistical considerations (fig. 2), there is no assurance that Em will turn out to be kT. 
Thus we determined both E, and ZrOt by the least squares fitting procedure. 

At this point it becomes convenient to introduce some alternate notation. Thus, we 
define 

and introduce new parameters by 

x = z;it J 
Then equation (4) becomes the function 

s ( n )  = A  [1 - exp ( 31 
If we denote the tabulated data by z(n), we can define 

where M is the total number of points used in the fitting. The expression for the sum 
of a geometric series can be used to reexpress Qj in the form 
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M 
+ ( x , A ) = g [ M + l  22 n=1 

where 

The function g(x) is monotonically decreasing and has the limiting values 

g(0) = M -I-1 

g(m>= 1 

Thus, it follows that + has the limiting values 

The parameters A and x are determined so as to minimize +; that is, they a r e  
solutions of the equations 

, 



M2 = A[M + 1 - 2g(x) + g(2x)I -c F(n)(1 - e-"" = 0 
aA 

n=1 

where the primes are used to symbolize differentiation with respect to x. The first of 
these immediately gives A as a function of x. 

M 

A(x) = n=1 
M + 1- 2g(x) + g(2x) 

We now define a function of x alone as 

G(x) E NA-1 a@-
i3X 

A=A(x) 

The solution of the equation 

G(x) = 0 

can now be accomplished by the Newton-Raphson iteration (ref. 23) 

where 0 < X -< 1 is a convergence control parameter. The iteration is carried out by 
using the following expressions: 

28 




The actual procedure used was to make an initial estimate for x, calculate A(x) from 
equation (B10) and obtain a new estimate for x from equation (B13). The iteration was 
terminated whenever I <-

When Em was not to be treated as a fitting parameter, we set A = 1 - (EO/kT) and 
A' = 0 and proceeded as before. When Zrot was not to be treated as a fitting parameter, 
A could be calculated directly from equation (B10). 
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TABLE I. - MOLECULAR PROPERTIES 

[Molecular diameter", 

Molecule Molecular 
weight 

HC1 36.461 
DC1 37.467 
HC1(1/2) 36.461 
HCl(9jlO) 36.461 

I 

3.36X10-8 cni (3.36XlO-lom).  ] 

Moment of Dipole 
inertia,  moment, 

I, P, 


2.6431~10-~~1.081X10-18 

5. 1404 1.085 

2.6431 .541 

2.6431 .973 


aAll molecular diameters  se t  equal to that of HC1, which 
was obtained from an analysis of viscosity data made 
by using the Stockmayer potential (ref. 24). 

TABLE 11. - MEAN FITTING PARAMETERS IN INTERVAL 2000 TO 3000 AND MEAN RELATIVE KINETIC 

ENERGY AND HEAT BATH MOLECULE ROTATIONAL ENERGY FOR 3000 COLLISIONS 

Molecule reniper- Two paran er  fit 
ature, Dimensionless Rotational 

K rotational collision 

Rotational Mean relative Heat bath 
collision kinetic energy, molecule 
number PEtrans rotational 

'rot for energy for 
one parameter 3000 collisions 

fit PErot 

12.9 2.10 0.98 
21.1 2.07 .98 
15.6 2.06 1.00 
14.4 2.03 .99 
51.7 2.04 .97 
12.2 2.08 1.00 

number, 

'rot 

19.0 

24.4 

14.2 

21.7 

22.3 

12.9 


- THE FUNCTION 

energy. 
PE;o 

HC1 300 1. 17 
HC1 500 1.07 
DC1 300 .97 
DC1 500 1.19 
HCl(l,'2) 300 .64 
HCl(9 10) 300 1.02 

FABLE 111. 

Molecule 

HC1 300 
HC1 500 
DC1 300 
DC1 500 
HC1(1/2) 300 
HC1(9/10) 300 

AFTER 3000 COLLISIONS 

F r e e  

18.095 

3.667 

8.727 

17.374 

2.576 

14.747 


Fixed a t  mean 

18.138 

3.703 

8.774 

17.537 

2.693 

14.803 


10.462 10.478 

2.883 2.902 

7.083 7.357 

4.458 4.910 

1.236 1.446 

10.983 12.256 
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TABLE IV. - EXPERIMENTAL AND THEORETICAL ROTATIONAL COLLISION 

NUMBERS Zrot FOR HC1 AND DC1 

(a) Experimental 

Molecule Temperature,  Rotational collision number Zrot obtained from-
K 

. 

1 
300 
500 
300 
500 

HC1(1/2) 	 300 
300 __ 

_-~ 

Molecule Temperature ,  
K 

-

Thermal I .
conductivity 

measurementsa Single- Double

process process 

3 .8  6.4 
1. 0 ‘9.6 

.9 
0 

--e 


(b) Theoretical 

Rotational collision number Zrot calculated by-I
L - ~ 

--I 
Perturbation Molecular dynamicse 

..~calculationd 1 

_- . -

300 19.0 21.2 17.5 
500 24.4 27. 1 23.2 
300 14. 2 16. 1 12. 7 
500 21.7 25.0 18.7 

HC1(1/2) 300 22.3 27.4 19. 1 
HC1(9/10) 300 12.9 16.4 10.0 

. .. . 

aTaken from table IJ.I of ref. 2. 

bData of L. B. Evans (ref. 22). 

‘Read from a curve faired through data of L. B. Evans (ref. 22). 

dTaken from table IV of ref. 2. 

eThis work. 

One parameter f i t  

Mean Max. Min. 

12.9 13.2 12.6 
21. 1 21.4 20.8 
15.6 16.0 15.3 
14.4 15.0 13.8 
51.7 53.4 48.7i12.2 12.5 11.8 
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TABLEV. -TEMPERATUREDEPENDENCEOF 

ROTATIONAL COLLISION NUMBER Zrot 

FOR HC1 AND DC1 

Source 

Experimental : 
Thermal conductivity 
Acoustics 

Single-r elaxat ion process 
Double-r elaxat ion process  

Theoretical: 
Perturbation calculation 
Molecular dynamics 

Two parameter fit 
One parameter fit 

HC 1 DC1 

3.8 CO 

.67  

.70 

. 8 3  0 .81  

. 7 8  .66 

. 6 1  1.08 

Molecule Teinperatur e ,  [ER(3000) - Eo] (E, -
K I 

HC 1 300 0.9572 0.9903 
HC 1 I 500 I ,9142 .94 15 
DC 1 300 .9855 ,9787 
DC1 500 ,9372 .9845 
HCl(1 2) 300 .9326 .6865 
HCl(9 10) 300 .9904 .9927 
aCalculated by eq. (4) using the data given in figs. 12 to 14 
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TABLE VII. - COMPARISON OF THEORETICAL 

ROTATIONAL COLLISION NUMBERS 

Molecule Temperature ,  Rotational collision number, determined by- I
1K 

3 0 0  

5 0 0  

3 0 0  

5 0 0  

- -___ 

Perturbation Molecular dynamics 
calculation I 

Two parameter  
fit 

6 5 . 9  

7 9 . 8  

5 1 . 9  

6 4 . 2  

Exponential approximation of ensemble evolution 
Evolution of one ensemble member 

One parameter 
fit 

'rot 
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Figure 1. - Temporal evolution of rotational energy of ensemble. 
Shading represents density of data points. 
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Figure 2. - Probability that  a random sample of size N drawn f rom a x2 distr ibut ion wi th  u degrees of 
freedom lies in the interval  (1i p)ul, a b u t  the mean pl. 
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Figure 3. - Relative motion of molecules. 

37 




m 

i 

Intermc x l a r  

(a) 1:elative translational velocity. Initial velocity, (bi Target roiaiiorial energy. 
41x104 centimeters per second. 

e 

6 


4 

OQ 2 0 5  

W- W
c c 

m c ._ u ._ 
E E 
8 8 
> -2 N 

-4 


-5 

-u 


1. :
-4 -2 6 2, 

X coordinaie, ,, 
(t)Collision trajectory in  X-Y (til Collision trajectory in  ' / - L

plane. plane. 

-1 
i
! 
I
1 
I 

1 
IC 

Z coortiina!?, 
(e )  Collision trajcctory in 2-% plane. 

FicJ1:re4. - Tily--,istory ?lots of relativc translational velocity, targct rotational cncrqy, ar,L;CO"ISIU: irJw:,nrT-s for 2 -e 
flcctin trllition. 

38 



c 

“
!z I3.c/
F

i 	
m 2 * 5 1  
e ZCI 
- la5t

rrr 7 
.9m

.
c
2 . 5 ~  

10. 9 7 5 L  B 0 
10 a 

lnte rmolecular separation, 
(a) Relative translat ional velocity. In i t ia l  (b) Target rotational energy. 

velocity, 5.95xldl centimeters per second. 

Y coordinate, 

(c) Collision trajectory in Y-Z plane. 

Figure 5. - Time-history plots of relative translational velocity, target rotational energy, and col l ision 
trajectory for a simple deflection collision. 

39 


I 




1.4 

I 1 I 


Figure 6. -Least  squares fitt ing constants for %I a s  function of the number of c o l l i s i o ~ s :two parameter 
analysis. 
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Figure 7. -Least squares fitt ing constants for DCI a s  a function of the number of collisions: two parameter 
analysis. 
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Figure 8. -Least squares fitt ing constants for HC1(1/2) and HCI(9110) as a function of the number of collisions: 
two parameter analysis; temperature, 300 K. 
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Figure 9. -Least squares fitt ing constant for HCI as a function of the number of collisions: one parameter analysis. 
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Figure 10. -Least squares f i t t ing constant for DCI as a functiorl of the number of collisiofis: o1.e parameter 
arialysis. 
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Figure 11. -Least squares f i t t ing constant for HCIl112) and I-ICI(9110)as a function of the number of collisions: 
one parameter analysis. 

43 




I
I 

.8: 	 

-

. 4  

-

-
Zrot L / k T  

-24.43548 1.0724707 _ _ _ _ _  21.129983 1.0 
-

-

.r- (a) Temperature, 500 K. 
w 

:,<w 

:.-*..-... .. ...e 

* *  
,::*-:' 

c, 

'; .-.. -....' ... 
-.--==...

_/-

. a - .1
- -

.6 - 

........ -

Z,,t L / k T  

19.042424 1.1672019 _ _ _ _ _  12.938141 1.0 
-

-
I I I I I I I I I I I I I I I I I I I I I J I I I I I I I 

0 200 4co 600 800 1000 1200 1400 16pO 1800 m0 2200 2400 2600 2800 3000 
Number of collisions, n 

(b) Temperature, 300 K. 

Figure 12 - Rotational relaxation of HCI. 
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